Diese Website verwendet Cookies, damit wir dir die bestmögliche Benutzererfahrung bieten können. Cookie-Informationen werden in deinem Browser gespeichert und führen Funktionen aus, wie das Wiedererkennen von dir, wenn du auf unsere Website zurückkehrst, und hilft unserem Team zu verstehen, welche Abschnitte der Website für dich am interessantesten und nützlichsten sind.
ANOVA mit Messwiederholung
- 31. Mai 2017
- Posted by: Mika
Oft müssen die Daten mit einer ANOVA mit Messwiederholung ausgewertet werden. Bisher sind wir bei der Analyse von Mittelwertunterschieden davon ausgegangen, dass die in der ANOVA berücksichtigten Gruppen, Stichproben oder experimentellen Bedingungen voneinander unabhängig sind. Du könntest aber bspw. auch daran interessiert sein der Frage nachzugehen, ob sich eine Gruppe im Laufe der Zeit verändert. Das heißt Du würdest dieselbe Gruppe zu bspw. drei Messzeitpunkten untersuchen.
Wann führt man eine ANOVA mit Messwiederholung durch?
Um diese Analyse statistisch korrekt durchzuführen ist die bisher besprochene klassische ANOVA ungeeignet. Denn sie verletzt die Voraussetzung der Gruppenunabhängigkeit. Der F-Test verliert also an Genauigkeit. Stattdessen wird die sogenannte ANOVA mit Messwiederholung berechnet, welche darauf ausgelegt ist, abhängige Daten zu untersuchen. Abhängig sind Daten allerdings nicht nur dann, wenn dieselbe Person mehrfach analysiert wird, sondern auch, wenn Datenpaare gebildet werden. Solche Paarungen von Daten können zum einen auf natürliche Weise entstehen. Ein Beispiel könnte sein, dass Du Fragestellungen bzgl. Mutter-Vater-Kind-Beziehung untersuchst. Zum anderen kannst Du solche Paarungen auch im Nachhinein künstlich erstellen, indem Du Personen z. B. aufgrund ihrer Ähnlichkeit bezüglich eines Merkmals einander zuordnest (= Matching).
Sehen wir uns beispielsweise an, ob Koffeinkonsum die Konzentrationsfähigkeit beeinflusst. Du könntest die Hypothese aufstellen, dass sich im Laufe der Zeit ein gewisser Gewöhnungseffekt einstellt und eine immer höhere Dosis an Koffein konsumiert werden muss, um denselben Effekt auf das Konzentrationsvermögen zu erzielen. Um diese Annahme zu überprüfen, untersuchst Du diesmal nicht drei experimentelle Gruppen (kein, wenig und viel Koffein), sondern gibst den teilnehmenden Personen vor, „wenig“ Kaffee zu trinken. Allerdings sollen alle Personen zu insgesamt drei Messzeitpunkten erscheinen (bspw. in drei aufeinanderfolgenden Wochen). Zwischen den Messzeitpunkten sollten die Probanden täglich dieselbe Menge Koffein konsumieren, damit Du untersuchen kannst, ob Koffeinresistenzen durch regelmäßigen Verzehr entstehen.
Du führst somit eine Messwiederholung durch und beobachtest, inwiefern sich der Zusammenhang von Koffeinkonsum und Konzentrationsfähigkeit über die drei Messzeitpunkte hinweg verändert. Du vergleichst also jede Person mit sich selbst (= within-subjects Design). Insgesamt kannst Du dann herausfinden, ob der Einfluss von Koffein auf Konzentration im Laufe der Zeit in Deiner Stichprobe abnimmt.
Vorteile der ANOVA mit Messwiederholung
- Die Stichprobe die Du benötigst um Deine Fragstellung zu beantworten, ist kleiner, als bei unabhängigen Gruppen. In unserem oben angeführten Beispiel durchlaufen Personen nicht nur eine Versuchsbedingung, sondern alle Bedingungen. Dies erfordert eine viel geringere Teilnehmeranzahl als wenn Du die drei Bedingungen mit unterschiedlichen Personen füllen würdest.
- Du kannst zeitliche Veränderungen statistisch korrekt auswerten, was bspw. auch bei pharmazeutischen Behandlungen oder Interventionen wichtig ist.
- Die Fehlervarianz ist reduziert, wenn Personen mit sich selbst vergleichen werden, da bestimmte Einflussgrößen (bspw. Persönlichkeitseigenschaften) über alle Messzeitpunkte hinweg gleich bleiben. Somit kannst Du sie viel besser kontrollieren, als wenn Du Vergleiche zwischen unabhängigen Gruppen anstellst.
Wenn Du nicht untersuchen möchtest, inwiefern sich eine AV im Laufe der Zeit verändert, sondern bspw. einfach drei Messwiederholungen miteinander vergleichen willst, kannst Du die Messwiederholung als „Faktor“ betrachten. Du setzt dann die Messzeitpunkte mit „Faktorstufen“ gleich (= Einfaktorielle Messwiederholungs-ANOVA).
ANOVA mit 3 oder mehr Faktorstufen
Hast Du eine AV mit mindestens drei Faktorstufen in Deinem Design eingeplant, muss die Voraussetzung der Sphärizität erfüllt sein (zusätzlich zu den bereits erwähnten Annahmen der ANOVA). Sphärizität kannst Du mit dem sogenannten Mauchly-Test überprüfen. Dieser testet, ob die Varianzen der Differenzen der Mittelwerte zwischen zwei Faktorstufen homogen sind. Das klingt kompliziert, soll aber im vereinfacht ausgedrückt zeigen, dass:
- die Variation innerhalb der experimentellen Bedingungen bzw. Faktorstufen ähnlich ist. Das heißt die teilnehmenden Personen unterscheiden sich bspw. bezüglich Konzentrationsfähigkeit zu Messzeitpunkt eins nicht viel stärker voneinander, als zu Messzeitpunkt zwei.
- und gleichzeitig nicht zwei Bedingungen bzw. Faktorstufen stärker voneinander abhängig sind, als andere zwei andere Bedingungen bzw. Faktorstufen (also Messzeitpunkt eins und zwei sollen nicht stärker zueinander in Bezug stehen als Messzeitpunkt zwei und drei).
Gerade bei kleinen Stichproben kann diese Voraussetzung allerdings schnell verletzt sein. Deswegen musst Du aber nicht gleich von der Berechnung einer ANOVA mit Messwiederholung absehen. Stattdessen solltest Du lediglich berücksichtigen, dass Du das Ergebnis der ANOVA einem Korrekturverfahren unterziehst. Meist verwendet man dazu die Greenhouse-Geisser Korrektur.